‘An incredible opportunity’: Technology based on cell programming could revolutionize dairy waste upcycling

Foremost Farms will leverage Ginkgo’s bioproduction services – particularly, strain optimization – to develop and commercialize a new technology that’s more environmentally-friendly than existing chemical production methods all while enabling the dairy to upcycle billions of pounds of dairy co-products each year. These co-products will be turned into other industrial inputs, creating new revenue streams for the dairy while helping it to lower its carbon footprint and manufacturing costs.

But how does it all work exactly? We spoke to Ginkgo Bioworks’ Jack Cavanaugh, associate director on the company’s commercial team, and Sneha Srikrishnan PhD, senior director of business development, to find out more about the project, details of which are still being kept confidential.

Producing value-added materials from waste

Ginkgo Bioworks is a biotechnology company that offers cell programming services for various markets, from food and agriculture to pharmaceuticals and the chemicals industry. The company also runs a biosecurity and public health unit where it leverages science and artificial intelligence to detect biological threats.

“Our most popular services in the dairy industry are our Ginkgo Enzyme Services for developing better enzymes and Protein Expression Services for alternative protein production,” Jack Cavanaugh explained. “These are part of our tailored suite of GM and non-GM organism engineering services for the alternative protein ingredients market, including production of nature identical protein sequences as dairy ingredients. We have developed GRAS strain assets – yeasts and filamentous fungi – that can ‘speak’ to COGs [cost of goods sold] reduction for fermentation of protein ingredients such as whey proteins or caseins, improved media and fermentation conditions for the strains developed, and unique non-GM approaches that can be applied to microbes as probiotics, or for upcycling dairy waste.”